Vendor-Specific Correction Software for Apparent Diffusion Coefficient Bias Due to Gradient Nonlinearity in Breast Diffusion-Weighted Imaging Using Ice-Water Phantom

Author:

Yoshida Tsukasa1ORCID,Urikura Atsushi2,Endo Masahiro1

Affiliation:

1. Department of Diagnostic Radiology, Shizuoka Cancer Center, Shizuoka, Japan

2. Department of Radiological Technology, Radiological Diagnosis, National Cancer Center Hospital, Tokyo, Japan.

Abstract

Objective This study aimed to evaluate a vendor-specific correction software for apparent diffusion coefficient (ADC) bias due to gradient nonlinearity in breast diffusion-weighted magnetic resonance imaging using an ice-water phantom. Methods The phantom consists of 5 plastic tubes with a length of 100 mm and a diameter of 15 mm, filled with distilled water and immersed in an ice-water bath. Diffusion-weighted images were acquired by echo-planar imaging sequence on a 3.0-T scanner. ADC maps with and without correction were calculated using 4 b-values (0, 100, 600, and 800 s/mm2). The mean ADCs were measured using a rectangular profile with 5 × 40 pixels in the anterior-posterior (AP) and a square region of interest with 5 × 5 pixels in the right-left (RL) and superior-inferior (SI) directions on the ADC map. ADC was compared with and without correction using a paired t test. Additionally, ADC of the ice-water phantom was measured at the magnet isocenter. Results ADC increased in the AP and RL directions and decreased in the SI direction with increasing distance from the isocenter before correction. After the correction, ADC at the off-center positions in the AP, RL, and SI directions was reduced to within 5% of the expected value. There were significant differences in the ADC at the off-center positions without and with correction (P < 0.001); however, ADC at the magnet isocenter did not vary after correction (1.08 ± 0.02 × 10−3 mm2/s). Conclusions The vendor-specific software corrected the ADC bias due to gradient nonlinearity at the off-center positions in the AP, RL, and SI directions. Therefore, the software will contribute to the accurate ADC assessment in breast DWI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3