Radiomics Analysis to Predict Lymphovascular Invasion of Gastric Cancer Based on Iodine-Based Material Decomposition Images and Virtual Monoenergetic Images

Author:

Shi Cen,Yan Jiulong,Yu Yixing,Hu Chunhong

Abstract

Objective This study aimed to investigate the utility of virtual monoenergetic images (VMIs) and iodine-based material decomposition images (IMDIs) in the assessment of lymphovascular invasion (LVI) in gastric cancer (GC) patients. Methods A total of 103 GC patients who underwent dual-energy spectral computed tomography preoperatively were enrolled. The LVI status was confirmed by pathological analysis. The radiomics features obtained from the 70 keV VMI and IMDI were used to build radiomics models. Independent clinical factors for LVI were identified and used to build the clinical model. Then, combined models were constructed by fusing clinical factors and radiomics signatures. The predictive performance of these models was evaluated. Results The computed tomography–reported N stage was an independent predictor of LVI, and the areas under the curve (AUCs) of the clinical model in the training group and testing group were 0.750 and 0.765, respectively. The radiomics models using the VMI signature and IMDI signature and combining these 2 signatures outperformed the clinical model, with AUCs of 0.835, 0.855, and 0.924 in the training set and 0.838, 0.825, and 0.899 in the testing set, respectively. The model combined with the computed tomography–reported N stage and the 2 radiomics signatures achieved the best performance in the training (AUC, 0.925) and testing (AUC, 0.961) sets, with a good degree of calibration and clinical utility for LVI prediction. Conclusions The preoperative assessment of LVI in GC is improved by radiomics features based on VMI and IMDI. The combination of clinical, VMI-, and IMDI-based radiomics features effectively predicts LVI and provides support for clinical treatment decisions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3