Affiliation:
1. Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
2. Research Collaboration, Canon Medical Systems, Guangzhou, Guangdong, China.
Abstract
Purpose
This study aimed to compare the image quality of chest computed tomography (CT) scans for COVID-19 pneumonia using forward-projected model-based iterative reconstruction solution-LUNG (FIRST-LUNG) with filtered back projection (FBP) and hybrid iterative reconstruction (HIR).
Method
The CT images of 44 inpatients diagnosed with COVID-19 pneumonia between December 2022 and June 2023 were retrospectively analyzed. The CT images were reconstructed using FBP, HIR, and FIRST-LUNG-MILD/STANDARD/STRONG. The CT values and noise of the lumen of the main trachea and erector spine muscle were measured for each group. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Subjective evaluations included overall image quality, noise, streak artifact, visualization of normal lung structures, and abnormal CT features. One-way analysis of variance was used to compare the objective and subjective indicators among the five groups. The task-based transfer function was derived for three distinct contrasts representing anatomical structures, lower-contrast lesion, and higher-contrast lesion.
Results
The results of the study demonstrated significant differences in image noise, SNR, and CNR among the five groups (P < 0.001). The FBP images exhibited the highest levels of noise and the lowest SNR and CNR among the five groups (P < 0.001). When compared to the FBP and HIR groups, the noise was lower in the FIRST-LUNG-MILD/STANDARD/STRONG group, while the SNR and CNR were higher (P < 0.001). The subjective overall image quality score of FIRST-LUNG-MILD/STANDARD was significantly better than FBP and FIRST-LUNG-STRONG (P < 0.001). FIRST-LUNG-MILD was superior to FBP, HIR, FIRST-LUNG-STANDARD, and FIRST-LUNG-STRONG in visualizing proximal and peripheral bronchovascular and subpleural vessels (P < 0.05). Additionally, FIRST-LUNG-MILD achieved the best scores in evaluating abnormal lung structure (P < 0.001). The overall interobserver agreement was substantial (intraclass correlation coefficient = 0.891). The task-based transfer function 50% values of FIRST reconstructions are consistently higher compared to FBP and HIR.
Conclusions
The FIRST-LUNG-MILD/STANDARD algorithm can enhance the image quality of chest CT in patients with COVID-19 pneumonia, while preserving important details of the lesions, better than the FBP and HIR algorithms. After evaluating various COVID-19 pneumonia lesions and considering the improvement in image quality, we recommend using the FIRST-LUNG-MILD reconstruction for diagnosing COVID-19 pneumonia.
Publisher
Ovid Technologies (Wolters Kluwer Health)