Affiliation:
1. Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
2. Department of Radiology, Shanghai East Hospital Affiliated to Tongji University
3. Department of Radiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Abstract
Objective
This study aimed to investigate the correlation between apparent diffusion coefficient (ADC) and the Ki-67 proliferation index with the pathologic grades of pediatric glioma and to compare their diagnostic performance in differentiating grades of pediatric glioma.
Patients and Methods
Magnetic resonance imaging examinations and histopathologies of 121 surgically treated pediatric gliomas (87 low-grade gliomas [LGGs; grades 1 and 2] and 34 high-grade gliomas [HGGs; grades 3 and 4]) were retrospectively reviewed. The mean tumor ADC (ADCmean), minimum tumor ADC (ADCmin), tumor/normal brain ADC ratio (ADC ratio), and value of the Ki-67 proliferation index of LGGs and HGGs were compared. Correlation coefficients were calculated for ADC parameters and Ki-67 values. The receiver operating characteristic curve was used to determine the diagnostic value of ADCmean, ADCmin, ADC ratio, and Ki-67 proliferation index for differentiating LGGs and HGGs.
Results
The ADC values were significantly negatively correlated with glioma grade, and the Ki-67 proliferation index had a significant positive correlation with glioma grade. A significant negative correlation was observed between ADCmean and Ki-67 proliferation index, between ADCmin and Ki-67 proliferation index, and between ADC ratio and Ki-67 proliferation index. The receiver operating characteristic analysis demonstrated moderate to good accuracy for ADCmean in discriminating LGGs from HGGs (area under the curve [AUC], 0.875; sensitivity, 79.3%; specificity, 82.4%; accuracy, 80.2%; positive predictive value [PPV], 92.0%; and negative predictive value [NPV], 60.9% [cutoff value, 1.187] [×10−3 mm2/s]). Minimum tumor ADC showed very good to excellent accuracy with AUC of 0.946, sensitivity of 86.2%, specificity of 94.1%, accuracy of 88.4%, PPV of 97.4%, and NPV of 72.7% (cutoff value, 0.970) (×10−3 mm2/s). The ADC ratio showed moderate to good accuracy with AUC of 0.854, sensitivity of 72.4%, specificity of 88.2%, accuracy of 76.9%, PPV of 94.0%, and NPV of 55.6% (cutoff value, 1.426). For the parameter of the Ki-67 proliferation index, in discriminating LGGs from HGGs, very good to excellent diagnostic accuracy was observed (AUC, 0.962; sensitivity, 94.1%; specificity, 89.7%; accuracy, 90.9%; PPV, 97.5%; and NPV, 78.0% [cutoff value, 7]).
Conclusions
Apparent diffusion coefficient parameters and the Ki-67 proliferation index were significantly correlated with histological grade in pediatric gliomas. Apparent diffusion coefficient was closely correlated with the proliferative potential of pediatric gliomas. In addition, ADCmin showed superior performance compared with ADCmean and ADC ratio in differentiating pediatric glioma grade, with a close diagnostic efficacy to the Ki-67 proliferation index.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Radiology, Nuclear Medicine and imaging