Multicenter Study of the Utility of Convolutional Neural Network and Transformer Models for the Detection and Segmentation of Meningiomas

Author:

Ma Xin,Zhao Lingxiao1,Dang Shijie1,Zhao Yajing2,Lu Yiping2,Li Xuanxuan2,Li Peng1,Chen Yibo1,Mei Nan2,Yin Bo,Geng Daoying

Affiliation:

1. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou

2. Department of Radiology, Huashan Hospital Affiliated to Fudan University

Abstract

Purpose This study aimed to investigate the effectiveness and practicality of using models like convolutional neural network and transformer in detecting and precise segmenting meningioma from magnetic resonance images. Methods The retrospective study on T1-weighted and contrast-enhanced images of 523 meningioma patients from 3 centers between 2010 and 2020. A total of 373 cases split 8:2 for training and validation. Three independent test sets were built based on the remaining 150 cases. Six convolutional neural network detection models trained via transfer learning were evaluated using 4 metrics and receiver operating characteristic analysis. Detected images were used for segmentation. Three segmentation models were trained for meningioma segmentation and were evaluated via 4 metrics. In 3 test sets, intraclass consistency values were used to evaluate the consistency of detection and segmentation models with manually annotated results from 3 different levels of radiologists. Results The average accuracies of the detection model in the 3 test sets were 97.3%, 93.5%, and 96.0%, respectively. The model of segmentation showed mean Dice similarity coefficient values of 0.884, 0.834, and 0.892, respectively. Intraclass consistency values showed that the results of detection and segmentation models were highly consistent with those of intermediate and senior radiologists and lowly consistent with those of junior radiologists. Conclusions The proposed deep learning system exhibits advanced performance comparable with intermediate and senior radiologists in meningioma detection and segmentation. This system could potentially significantly improve the efficiency of the detection and segmentation of meningiomas.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3