Effect of 320-Row Computed Tomography Acquisition Technology on Coronary Computed Tomography Angiography–Derived Fractional Flow Reserve Based on Machine Learning: Systolic and Diastolic Scan Acquisition

Author:

Yang Fengfeng1,Shi Ke2,Chen Yuhuan3,Yin Youbing3,Zhao Yang1,Zhang Tong2

Affiliation:

1. Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin

2. Department of Radiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin

3. Keya Medical, Shenzhen, China.

Abstract

Background The aim of the study is to investigate the performance of coronary computed tomography angiography (CCTA)–derived fractional flow reserve (CT-FFR) in the same patient evaluated by different systolic and diastolic scans, aiming to explore whether 320-slice CT scanning acquisition protocol has an impact on CT-FFR value. Methods One hundred forty-six patients with suspected coronary artery stenosis who underwent CCTA examination were included into the study. The prospective electrocardiogram gated trigger sequence scan was performed and electrocardiogram editors selected 2 optimal phases of systolic phase (preset collection trigger at 25% of R-R interval) and diastolic phase (preset collection trigger at 75% of R-R interval) for reconstruction. The lowest CT-FFR value (the CT-FFR value at the distal end of each vessel) and the lesion CT-FFR value (at 2 cm distal to the stenosis) after coronary artery stenosis were calculated for each vessel. The difference of CT-FFR values between the 2 scanning techniques was compared using paired Wilcoxon signed-rank test. Pearson correlation value and Bland-Altman were performed to evaluate the consistency of CT-FFR values. Results A total of 366 coronary arteries from the remaining 122 patients were analyzed. There was no significant difference regarding the lowest CT-FFR values between systole phase and diastole phase across all vessels. In addition, there was no significant difference in the lesion CT-FFR value after coronary artery stenosis between systole phase and diastole phase across all vessels. The CT-FFR value between the 2 reconstruction techniques had excellent correlation and minimal bias in all groups. The correlation coefficient of the lesion CT-FFR values for left anterior descending branch, left circumflex branch, and right coronary artery were 0.86, 0.84, and 0.76, respectively. Conclusions Coronary computed tomography angiography–derived fractional flow reserve based on artificial intelligence deep learning neural network has stable performance, is not affected by the acquisition phase technology of 320-slice CT scan, and has high consistency with the evaluation of hemodynamics after coronary artery stenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3