sTREM2 is a plasma biomarker for human NASH and promotes hepatocyte lipid accumulation

Author:

Kothari Vishal1ORCID,Savard Christopher234ORCID,Tang Jingjing1,Lee Sum P.3,Subramanian Savitha1ORCID,Wang Shari1,den Hartigh Laura J.1ORCID,Bornfeldt Karin E.15ORCID,Ioannou George N.234ORCID

Affiliation:

1. Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA

2. Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA

3. Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA

4. Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA

5. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA

Abstract

Background: Pathogenetic mechanisms of the progression of NAFL to advanced NASH coupled with potential noninvasive biomarkers and novel therapeutic targets are active areas of investigation. The recent finding that increased plasma levels of a protein shed by myeloid cells —soluble Triggering Receptor Expressed on Myeloid cells 2 (sTREM2) —may be a biomarker for NASH has received much interest. We aimed to test sTREM2 as a biomarker for human NASH and investigate the role of sTREM2 in the pathogenesis of NASH. Methods: We conducted studies in both humans (comparing patients with NASH vs. NAFL) and in mice (comparing different mouse models of NASH) involving measurements of TREM2 gene and protein expression levels in the liver as well as circulating sTREM2 levels in plasma. We investigated the pathogenetic role of sTREM2 in hepatic steatosis using primary hepatocytes and bone marrow derived macrophages. Results: RNA sequencing analysis of livers from patients with NASH or NAFL as well as livers from 2 mouse models of NASH revealed elevated TREM2 expression in patients/mice with NASH as compared with NAFL. Plasma levels of sTREM2 were significantly higher in a well-characterized cohort of patients with biopsy-proven NASH versus NAFL (area under receiver-operating curve 0.807). Mechanistic studies revealed that cocultures of primary hepatocytes and macrophages with an impaired ability to shed sTREM2 resulted in reduced hepatocyte lipid droplet formation on palmitate stimulation, an effect that was counteracted by the addition of exogenous sTREM2 chimeric protein. Conversely, exogenous sTREM2 chimeric protein increased lipid droplet formation, triglyceride content, and expression of the lipid transporter CD36 in hepatocytes. Furthermore, inhibition of CD36 markedly attenuated sTREM2-induced lipid droplet formation in mouse primary hepatocytes. Conclusions: Elevated levels of sTREM2 due to TREM2 shedding may directly contribute to the pathogenesis of NAFLD by promoting hepatocyte lipid accumulation, as well as serving as a biomarker for distinguishing patients with NASH versus NAFL. Further investigation of sTREM2 as a clinically useful diagnostic biomarker and of the therapeutic effects of targeting sTREM2 in NASH is warranted.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Hepatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3