Sodium cholate ameliorates nonalcoholic steatohepatitis by activation of FXR signaling

Author:

Pan Linyu1,Yu Ze1,Liang Xiaolin1,Yao Jiyou2,Fu Yanfang1,He Xu1,Ren Xiaoling1,Chen Jiajia1,Li Xuejuan3,Lu Minqiang2,Lan Tian1

Affiliation:

1. Guangdong Pharmaceutical University, Guangzhou, Guangdong, China

2. Department of HBP Surgery II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China

3. Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China

Abstract

Non-alcoholic steatohepatitis (NASH) has become a major cause of liver transplantation and liver-associated death. The gut-liver axis is a potential therapy for NASH. Sodium cholate (SC) is a choleretic drug whose main component is bile acids and has anti-inflammatory, antifibrotic, and hepatoprotective effects. This study aimed to investigate whether SC exerts anti-NASH effects by the gut-liver axis. Mice were fed with an high-fat and high-cholesterol (HFHC) diet for 20 weeks to induce NASH. Mice were daily intragastric administrated with SC since the 11th week after initiation of HFHC feeding. The toxic effects of SC on normal hepatocytes were determined by CCK8 assay. The lipid accumulation in hepatocytes was virtualized by Oil Red O staining. The mRNA levels of genes were determined by real-time quantitative PCR assay. SC alleviated hepatic injury, abnormal cholesterol synthesis, and hepatic steatosis and improved serum lipid profile in NASH mice. In addition, SC decreased HFHC–induced hepatic inflammatory cell infiltration and collagen deposition. The target protein-protein interaction network was established through Cytoscape software, and NR1H4 [farnesoid x receptor (FXR)] was identified as a potential target gene for SC treatment in NASH mice. SC-activated hepatic FXR and inhibited CYP7A1 expression to reduce the levels of bile acid. In addition, high-dose SC attenuated the abnormal expression of cancer markers in NASH mouse liver. Finally, SC significantly increased the expression of FXR and FGF15 in NASH mouse intestine. Taken together, SC ameliorates steatosis, inflammation, and fibrosis in NASH mice by activating hepatic and intestinal FXR signaling so as to suppress the levels of bile acid in NASH mouse liver and intestine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Hepatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3