Spock2 functions as a key time-series gene of endothelial cells in sepsis-induced cardiomyopathy

Author:

Zhang Jian123,Lu Yao4,Shen Yihui1,Zhang Hui1,Xu Yuchen5,Wang Xuejun1,Chen Yifan5,He Xiaozhen1,Lu Hao523,Cheng Leilei123ORCID

Affiliation:

1. Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China.

2. National Clinical Research Center for Interventional Medicine, Shanghai, China.

3. Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China.

4. Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Nanjing Medical University, Xuzhou, Jiangsu, China.

5. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.

Abstract

The study aimed to investigate the pathogenesis of sepsis-induced cardiomyopathy (SIC), a leading cause of mortality in septic patients. Transcriptome data from cecal ligation and puncture (CLP)-induced septic mice were analyzed at different time points (24, 48 and 72 h) using GSE171546 data. Through weighted gene co-expression network analysis (WGCNA), time series, and differential expression analyses, key time-series differentially expressed genes (DEGs) were identified. Additionally, single-cell sequencing data (GSE207363) were used for both differential and pseudotime analyses to pinpoint DEGs specific to endothelial cells. The study highlighted Spock2, S100a9, S100a8, and Xdh as differential genes specific to endothelial cells in a time-dependent manner. Immunofluorescence validation confirmed the increased expression of SPOCK2 in the endothelial cells of CLP-induced septic mice. Further, in vitro studies showed that deletion of Spock2 significantly increased LPS-induced apoptosis in human umbilical vein endothelial cells (HUVECs). In conclusion, SPOCK2 expression is increased in septic cardiac endothelial cells and LPS-induced HUVECs and may play a protective role.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3