N-n-butyl haloperidol iodide mitigates myocardial ischemia/reperfusion injury through activation of SIRT1-Nrf2 signaling loop

Author:

Lu Binger1ORCID,Feng Zikai1,Wang Yali1,Liao Jilin2,Wang Bin3,Gao Fenfei3,Zheng Fuchun3,Shi Ganggang3,Zhang Yanmei3

Affiliation:

1. The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China

2. The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China

3. Department of Pharmacology, Shantou University Medical College, Shantou 515041, China

Abstract

Abstract: N-n-butyl haloperidol iodide (F2), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F2 depends on Nrf2 using a mouse heart I/R model. F2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 min before reperfusion. Systemic administration of 0.4 mg/kg F2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F2-induced activation of Nrf2 is SIRT1-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F2-upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F2 against myocardial I/R injury, and may provide new insights for the treatment of ischemic heart disease.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Guangdong Province of China

Special Funds for Science and Technology of Guangdong Province of China

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3