Antiactin-Targeted Immunoliposomes Ameliorate Tissue Plasminogen Activator-Induced Hemorrhage after Focal Embolic Stroke

Author:

Asahi Minoru1,Rammohan Ram2,Sumii Toshihisa1,Wang Xiaoying1,Pauw Robert Jan1,Weissig Volkmar2,Torchilin Vladimir P2,Lo Eng H1

Affiliation:

1. Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Program in Neuroscience, Harvard Medical School Charlestown, Charlestown, Massachusetts, U.S.A.

2. Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, U.S.A.

Abstract

Thrombolytic stroke therapy with tissue plasminogen activator (tPA) is limited by serious risks of intracerebral hemorrhage. In this study, the authors show that a novel antiactin-targeted immunoliposome significantly reduced tPA-induced hemorrhage in an established rat model of embolic focal stroke. Spontaneously hypertensive rats were subjected to focal ischemia using homologous blood clot emboli. Delayed administration of tPA (10 mg/kg, 6 hours after ischemia) induced intracerebral hemorrhage at 24 hours. In control rats treated with tPA plus vehicle, hemorrhage volumes were 9.0 ± 2.4 uL (n = 7). In rats treated with tPA plus antiactin immunoliposomes, hemorrhage volumes were significantly reduced to 4.8 ± 2.7 uL (n = 8, P < 0.05). No significant effects were seen when rats were treated with tPA plus a nontargeted liposome (7.8 ± 2.1 uL, n = 9). Fluorescent immunohistochemistry showed that rhodamine-labeled targeted liposomes colocalized with vascular structures in ischemic brain that stained positive for endothelial barrier antigen, a marker of cerebral endothelial cells. These data suggest that immunoliposomes may ameliorate vascular membrane damage and reduce hemorrhagic transformation after thrombolytic therapy in cerebral ischemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3