Delayed Treatment with MLN519 Reduces Infarction and Associated Neurologic Deficit Caused by Focal Ischemic Brain Injury in Rats via Antiinflammatory Mechanisms Involving Nuclear Factor-κB Activation, Gliosis, and Leukocyte Infiltration

Author:

Williams Anthony J.1,Hale Sarah L.2,Moffett John R.1,Dave Jitendra R.1,Elliott Peter J.3,Adams Julian4,Tortella Frank C.1

Affiliation:

1. Walter Reed Army Institute of Research, Silver Spring, Maryland, U.S.A.

2. Armed Forces Institute of Pathology, Washington, D.C., U.S.A.

3. Combinato RX, Boston, Massachusetts, U.S.A.

4. Millenium Pharmaceuticals, Cambridge, Massachusetts, U.S.A.

Abstract

Secondary brain injury due to ischemia includes the infiltration of leukocytes into the brain parenchyma mediated by activation of nuclear factor-κB (NF-κB), which is activated by proteasome degradation. Neuroprotection with the proteasome inhibitor MLN519 has previously been reported to decrease ischemic brain injury in rats. The authors used higher doses of MLN519 to evaluate the neuroprotection therapeutic window after 24 hours of brain injury in rats as correlated to proteasome levels, activated NF-κB immunoreactivity, and leukocyte infiltration. Male Sprague-Dawley rats were subjected to 2-hour middle cerebral artery occlusion (MCAO) and recovery. MLN519 or vehicle was administered after injury with a single injection given in delayed increments of 2 hours (i.e., 4, 6, or 8 hours after MCAO). Treatment with MLN519 up to 6 hours after MCAO (4 hours after reperfusion) effectively reduced neuronal and astrocytic degeneration, decreased cortical infarct volume, and increased neurologic recovery. These effects were related to >80% reductions in blood proteasome levels, reduced neutrophil infiltration, and a decrease in activated NF-κB immunoreactivity. This improved neuroprotection profile and antiinflammatory effect of MLN519 provides an exciting avenue for potential treatment of focal ischemic brain injury in humans.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3