A Novel Bone-Screw-Fastener Demonstrates Greater Maximum Compression Force Prior to Failure Compared to a Traditional Buttress Screw.

Author:

Thorne Tyler1,Featherall Joseph1ORCID,O’Neill Dillon1,Lisitano Leonard1,Haller Justin1

Affiliation:

1. University of Utah Department of Orthopaedic Surgery, Salt Lake City, UT, USA

Abstract

Objectives: This study compared the maximal compression force prior to thread stripping of the novel bone-screw-fastener (BSF) compared to the traditional-buttress-screw (TBS) in synthetic osteoporotic and cadaveric bone models. Methods: Maximum compression force of the plate-bone interface prior to loss of screw purchase during screw tightening was measured between self-tapping 3.5mm BSF and 3.5mm TBS using calibrated load cells. Three synthetic biomechanical models were used: a synthetic osteoporotic diaphysis (model 1); a 3-layer biomechanical polyurethane foam with 50-10-50 pounds-per-cubic-foot (PCF) layering (model 2), and a 3-layer polyurethane foam with 50-15-50 PCF layering (model 3). For the cadaveric metaphyseal model, three sets of cadaveric tibial plafonds and three sets of cadaveric tibial plateaus were used. A plate with sensors between the bone-plate interface was used to measure compression force during screw tightening in the synthetic bone models, while an annular load cell that measured screw compression as it slid through a guide was used to measure compression in the cadaver models. Results: Across all synthetic osteoporotic bone models, the BSF demonstrated greater maximal compression force prior to stripping compared to the TBS (model 1, 155.51N(SD=7.77N) vs 138.78N(SD=12.74N), p=0.036; model 2, 218.14N (SD=14.15N) vs 110.23N(SD=8.00N), p<0.001; model 3, 382.72N(SD=20.15) vs 341.09N(SD=15.57N), p=0.003. The BSF had greater maximal compression force for the overall cadaver trials, the tibial plafond trials, and the tibial plateau trials (overall, 111.27N vs 97.54N(SD 32.32N), p=0.002; plafond, 149.6N vs 132.92N(SD 31.32N), p=0.006; plateau 81.33N vs 69.89N(SD 33.38N), p=0.03. Conclusion: The novel bone-screw-fastener generated 11-65% greater maximal compression force than the traditional-buttress-screw in synthetic osteoporotic and cadaveric metaphyseal bone models. A greater compression force may increase construct stability, facilitate early weight bearing, and reduce construct failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference13 articles.

1. The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion;Tsuji;J Mech Behav Biomed Mater,2013

2. A comparison of screw insertion torque and pullout strength;Ricci;J Orthop Trauma,2010

3. Stripping of the bone screws at insertion. The relation of torque and angular displacement in predicting admissible torque values;Cordey;Acta Orthop Belg,1980

4. History of the orthopedic screw;Roberts;Orthopedics,2013

5. Introducing the “Bone-Screw-Fastener” for improved screw fixation in orthopedic surgery: a revolutionary paradigm shift?;Stahel;Patient Saf Surg,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3