Influence of the Endothelial Glycocalyx on Cerebral Blood Flow in Mice

Author:

Vogel J.1,Sperandio M.2,Pries A.R.3,Linderkamp O.2,Gaehtgens P.3,Kuschinsky W.1

Affiliation:

1. Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany

2. Department of Neonatology, University of Heidelberg, Heidelberg, Germany

3. Department of Physiology, University of Berlin, Germany

Abstract

The endothelial surface layer (glycocalyx) of cerebral capillaries may increase resistance to blood flow. This hypothesis was investigated in mice by intravenous administration of heparinase (2500 IU/kg body weight in saline), which cleaves proteoglycan junctions of the glycocalyx. Morphology was investigated by transmission electron microscopy. Cerebral perfusion velocity was recorded before and during heparinase or saline treatment using laser–Doppler flowmetry. In addition, cerebral blood flow (CBF) was measured 10 minutes after heparinase or saline treatment using the iodo[14C]antipyrine method. Laser–Doppler flowmetry and CBF measurements were performed during normocapnia and severe hypercapnia (Pco2: 120 mm Hg). After heparinase, morphology showed a reduced thickness of the glycocalyx in cortical microvessels by 43% ( P < 0.05) compared with saline-treated controls. Under normocapnic conditions, a 15% ( P < 0.05) transient increase of cerebral flow velocity occurred 2.5 to 5 minutes after heparinase injection. Laser–Doppler flow and CBF returned to control values ten minutes after the injection. However, during severe hypercapnia, heparinase treatment resulted in a persisting increase in laser–Doppler flow (6%, P < 0.05) and CBF (30%, P < 0.05). These observations indicate the existence of a flow resistance in cerebral capillaries exerted by the glycocalyx. The transient nature of the CBF increase during normocapnia may be explained by a vascular compensation that is exhausted during severe hypercapnia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3