Interactions between the Endothelium-Derived Relaxing Factor/Nitric Oxide System and the Endogenous Opiate System in the Modulation of Cerebral and Spinal Vascular CO2 Responsiveness

Author:

Komjáti Katalin1,Greenberg Joel H.,Reivich Martin,Sándor Peter

Affiliation:

1. Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary

Abstract

The role of the L-arginine-nitric oxide (NO) system, the role of the endogenous morphine-like substances (endorphins), and the possible interaction between these two systems in the modulation of regional cerebral and spinal CO2 responsiveness was investigated in anesthetized, ventilated, normotensive, normoxic cats. Regional cerebral blood flow was measured with radiolabeled microspheres in hypocapnic, normocapnic, and hypercapnic conditions in nine individual cerebral and spinal cord regions. General opiate receptor blockade by 1 mg/kg naloxone intravenously alone or NO synthase blockade by 3 mg/kg Nω-nitro-L-arginine-methyl ester (L-NAME) intravenously alone caused no changes in regional CO2 responsiveness. Combined administration of these two blocking agents in the very same doses, however, resulted in a strong potentiation, with a statistically significant reduction of the CO2 responsiveness observed. Separation of the blood flow response to hypercapnia and hypocapnia indicates that this reduction occurs only during hypercapnia. Specific μ and δ opiate receptors were blocked by 0.5 mg kg−1 IV β-funaltrexamine and 0.4 mg kg−1 IV naltrindole, respectively. The role of specific μ and δ opiate receptors in the NO–opiate interaction was found to be negligible because neither μ nor δ receptor blockade along with simultaneous NO blockade were able to decrease CO2 responsiveness. The current findings suggest a previously unknown interaction between the endothelium-derived relaxing factor/nitric oxide (EDRF/NO) system and the endogenous opiate system in the cerebrovascular bed during hypercapnic stimulation, with the phenomenon not mediated by μ or δ opiate receptors.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3