Redox Control of Neuronal Damage during Brain Ischemia after Middle Cerebral Artery Occlusion in the Rat: Immunohistochemical and Hybridization Studies of Thioredoxin

Author:

Takagi Yasushi12,Tokime Tomoo1,Nozaki Kazuhiko1,Gon Yasuhiro2,Kikuchi Haruhiko1,Yodoi Junji2

Affiliation:

1. Department of Neurosurgery, Faculty of Medicine, Kyoto University, Sakyo, Kyoto, Japan

2. Department of Biological Responses, Institute for Virus Research, Kyoto University, Sakyo, Kyoto, Japan

Abstract

Thioredoxin (TRX) is a small, multifunctional protein with a redox-active site and multiple biological functions that include reducing activity for reactive oxygen intermediates. We assayed TRX and TRX mRNA by immunohistochemical methods and hybridization experiments in the rat brain after middle cerebral artery (MCA) occlusion. During ischemia, the immunoreactivity for TRX decreased; it disappeared after MCA occlusion in the ischemic regions. It rapidly decreased and nearly disappeared at 4 and 16 hours after MCA occlusion in the lateral striatum and frontoparietal cortex, respectively. On the other hand, in the perifocal ischemic region, the penumbra, TRX immunoreactivity began to increase 4 hours after MCA occlusion and continued to increase until 24 hours after occlusion. In hybridization experiments, TRX mRNA decreased and nearly disappeared 4 hours after MCA occlusion in the lateral striatum. In the frontoparietal cortex, it decreased until 24 hours after MCA occlusion. In the perifocal ischemic region, TRX mRNA began to increase 4 hours after MCA occlusion and continued to increase until 24 hours. Northern blot analysis showed that total TRX mRNA in the operated hemispheres was induced from 8 hours and increased until 24 hours after the surgical procedures. We previously reported that recombinant TRX promotes the in vitro survival of primary cultured neurons. We now suggest that TRX in the penumbra has neuroprotective functions and that decreased levels of TRX in the ischemic core modify neuronal damage during focal brain ischemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3