Hibernation in Ground Squirrels Induces State and Species-Specific Tolerance to Hypoxia and Aglycemia: AnIn VitroStudy in Hippocampal Slices

Author:

Frerichs Kai U.12,Hallenbec John M.1

Affiliation:

1. Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland

2. the Division of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A.

Abstract

Hibernation in mammals is associated with a regulated depression of global cellular functions accompanied by reductions of cerebral blood flow that would render the brain profoundly ischemic under normal conditions. Homeostatic control is preserved, however, and brain damage does not occur. We investigated the possibility that hibernation not only confers tolerance to profound hypothermia, but also to hypoxia and aglycemia independent of temperature. Hippocampal slices from ground squirrels Citellus tridecemlineatus in both the active and hibernating states and from rats were subjected to in vitro hypoxia and aglycemia at incubation temperatures of 36°C, 20°C, and 7°C and evaluated histologically. A binary bioassay was used to determine the duration of hypoxia/aglycemia tolerated in each group. At all temperatures, slices from hibernating animals were most tolerant compared with both active squirrels and rats. Slices from active ground squirrels were more tolerant than rat at 20°C and 7°C but not at 36°C indicating a species-specific difference that becomes manifest at lower temperatures. These results indicate that hibernation is associated not only with tolerance to profound hypothermia but also to deprivation of oxygen and glucose. Because tolerance was already demonstrable at the shortest duration of hibernation studied, rapid therapeutic induction of a similar state may be possible. Therefore, identification of the regulatory mechanisms underlying this tolerance may lead to novel neuroprotective strategies.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3