Calcium Influx from the Extracellular Space Promotes NADH Hyperoxidation and Electrical Dysfunction after Anoxia in Hippocampal Slices

Author:

Pérez-Pinzón Miguel A.1,Mumford Patricia L.1,Carranza VeróAnica1,Sick Thomas J.1

Affiliation:

1. Department of Neurology, University of Miami School of Medicine, Miami, Florida, U.S.A.

Abstract

A characteristic event during reperfusion after cerebral ischemia in vivo, and reoxygenation after anoxia in vitro, is hyperoxidation of the electron carriers of the mitochondrial respiratory chain. Current studies have tested the hypothesis that there is a relation among calcium molecules derived from extracellular sources, mitochondrial hyperoxidation, and electrical recovery after anoxia in hippocampal slices. Rat hippocampal slices were superfused with artificial cerebrospinal fluids (ACSF) containing calcium chloride (CaCl2) in concentrations of: 0.5, 1, 2, and 4 mmol/L. Slices were made anoxic and then allowed to recover for 60 minutes. Reduction–oxidation shifts of NADH were measured by rapid-scanning spectrofluorometry. Synaptic activity was indicated by population spike amplitudes in the CA1pyramidal cell subfield of the hippocampus in response to stimulation of the Schaffer collaterals. Low calcium ACSF concentrations ameliorated NADH hyperoxidation and improved synaptic transmission recovery after anoxia. High calcium ACSF concentrations had opposite effects. These data suggest a link between mitochondrial hyperoxidation and electrical recovery after postanoxia reoxygenation and support the hypothesis that cytosolic calcium overload promotes mitochondrial hyperoxidation and limits electrical recovery.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3