Larger Anastomoses in Angiotensinogen-Knockout Mice Attenuate Early Metabolic Disturbances after Middle Cerebral Artery Occlusion

Author:

Maeda Keiichiro,Hata Ryuji,Bader Michael1,Walther Thomas1,Hossmann Konstantin-Alexander

Affiliation:

1. Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany

Abstract

Abnormalities in the homeostasis of the renin-angiotensin system have been implicated in the pathogenesis of vascular disorders, including stroke. The authors investigated whether angiotensinogen (AGN) knockout mice exhibit differences in brain susceptibility to focal ischemia, and whether such differences can be related to special features of the collateral circulation. Wild-type and AGN-knockout mice were submitted to permanent suture occlusion of the middle cerebral artery (MCA). The collateral vascular system was visualized by systemic latex infusion, and the ischemic lesions were identified by cresyl-violet staining. The core and penumbra of the evolving infarct were differentiated by bioluminescence and autoradiographic imaging of A TP and protein biosynthesis, respectively. In wild-type mice, mean arterial blood pressure was 95.0 ± 8.6 mm Hg, and the diameter of fully relaxed anastomotic vessels between the peripheral branches of the anterior and middle cerebral arteries 26.6 ± 4.0 μm In AGN knockouts, mean arterial blood pressure was significantly lower, 71.5 ± 8.5 mm Hg ( P <,01), and the anastomotic vessels were significantly larger, 29.4 ± 4.6 μm ( P < .01). One hour after MCA occlusion, AGN-knockout mice exhibited a smaller ischemic core (defined as the region of ATP depletion) but a larger penumbra (the area of disturbed protein synthesis with preserved ATP). At 24 hours after MCA occlusion, this difference disappeared, and histologically visible lesions were of similar size in both strains. The observations show that in AGN-knockout mice the more efficient collateral blood supply delays ischemic injury despite the lower blood pressure. Pharmacologic suppression of angiotensin formation may prolong the therapeutic window for treatment of infarcts.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational modeling of multiscale collateral blood supply in a whole-brain-scale arterial network;PLOS Computational Biology;2023-09-08

2. Role Renin Angiotensin System in Hypertension;The Renin Angiotensin System in Cardiovascular Disease;2023

3. Pathogenetic Mechanisms of Hypertension–Brain-Induced Complications: Focus on Molecular Mediators;International Journal of Molecular Sciences;2022-02-23

4. Penumbra in Acute Ischemic Stroke;Current Neurovascular Research;2021-10

5. Role of the central renin‑angiotensin system in hypertension (Review);International Journal of Molecular Medicine;2021-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3