High Sensitivity of Protoplasmic Cortical Astroglia to Focal Ischemia

Author:

Lukaszevicz Anne-Claire1,Sampaïo Nathalie1,Guégan Christelle1,Benchoua Alexandra1,Couriaud Cécile1,Chevalier Elisabeth1,Sola Brigitte2,Lacombe Pierre3,Onténiente Brigitte1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale, Université Paris XII, Créteil

2. Equipe Universitaire Associée, Faculté de Médecine, Caen

3. Centre National de la Recherche Scientifique, Faculté de Médecine Villemin, Paris, France

Abstract

The generally accepted concept that astrocytes are highly resistant to hypoxic/ischemic conditions has been challenged by an increasing amount of data. Considering the differences in functional implications of protoplasmic versus fibrous astrocytes, the authors have investigated the possibility that those discrepancies come from specific behaviors of the two cell types. The reactivity and fate of protoplasmic and fibrous astrocytes were observed after permanent occlusion of the medial cerebral artery in mice. A specific loss of glial fibrillary acidic protein (GFAP) immunolabeling in protoplasmic astrocytes occurred within minutes in the area with total depletion of regional CBF (rCBF) levels, whereas “classical” astrogliosis was observed in areas with remaining rCBF. Severe disturbance of cell function, as suggested by decreased GFAP content and increased permeability of the blood–brain barrier to macromolecules, was rapidly followed by necrotic cell death, as assessed by ultrastructure and by the lack of activation of the apoptotic protease caspase-3. In contrast to the response of protoplasmic astrocytes, fibrous astrocytes located at the brain surface and in deep cortical layers displayed a transient and limited hypertrophy, with no conspicuous cell death. These results point to a differential sensitivity of protoplasmic versus fibrous cortical astrocytes to blood deprivation, with a rapid demise of the former, adding to the suggestion that protoplasmic astrocytes play a crucial role in the pathogenesis of ischemic injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3