Affiliation:
1. Department of Neurology, Technical University of Munich, Germany
Abstract
The aim of this study was to investigate side-to-side differences of simultaneously measured middle cerebral artery (MCA) blood flow velocities during various hemisphere-specific tasks. Using a transcranial Doppler device, flow velocity changes of 24 healthy, right-handed subjects were monitored simultaneously in the left and right MCA during different hemisphere-specific tasks. Mean flow velocity (MFV) curves were averaged for each individual subject and task. Simultaneously, heart rate, blood pressure and end-tidal carbon dioxide (CO2) were measured in a subgroup of six subjects. When compared with the resting state, all stimuli produced significant ( p < 0.001) bilateral MFV increases, ranging from 2.5–9.2%. A lateralization of MFV increases with a significantly ( p < 0.001) more pronounced increase in MFV in the hemisphere contralateral to the performing hand was observed both during simple sequential finger movements and a complex spatial task. During the complex spatial task, consistently higher MFV increases were observed in the right MCA ( p < 0.001), regardless of the side of task performance. Recognition of pictorial material presented as part of a memory task, also resulted in a side-to-side difference of respective MFV increases (right > left, p < 0.001), whereas memorization did not. Whereas bilateral MFV elevations observed during stimulation with white noise were only discrete and not lateralized, exposure to overt speech produced significantly higher ( p < 0.001) MFV increases in the left MCA. The time course of the MFV reaction showed a rapid increase with an initial maximum after 4–5 s. Heart rate, blood pressure, and end-tidal CO2 showed only subtle changes during the stimulation periods. In conclusion, the observed side-to-side differences of MFV reaction in the left and right MCA concur with current functional imaging data. Bilateral simultaneous repetitive transcranial Doppler monitoring is a sensitive method to detect cerebral perfusion asymmetries caused by hemisphere-specific activation, and thus may be helpful for noninvasive assessment of hemispheric dominance for language.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献