Unchanged Cerebral Blood Flow and Oxidative Metabolism after Acclimatization to High Altitude

Author:

Møller Kirsten1,Paulson Olaf B.2,Hornbein Tom F.3,Colier Wil N. J. M.4,Paulson Anna S.2,Roach Robert C.5,Holm Søren6,Knudsen Gitte Moos2

Affiliation:

1. Department of Infectious Diseases, National University Hospital Rigshospitalet, Copenhagen, Denmark

2. Neurobiology Research Unit, National University Hospital Rigshospitalet, Copenhagen, Denmark

3. Department of Anesthesiology, University of Washington, Seattle, Washington, U.S.A.

4. Departments of Physiology and Geriatrics, University Medical Center Nijmegen, The Netherlands

5. Department of Life Sciences, Division of Physiology, New Mexico Highlands University, Las Vegas, New Mexico, U.S.A.

6. Department of Nuclear Medicine, National University Hospital Rigshospitalet, Copenhagen, Denmark

Abstract

The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level. Global cerebral blood flow at rest and during exercise on a bicycle ergometer was measured by the Kety-Schmidt technique. Cerebral metabolic rates of oxygen, glucose, and lactate were calculated by the Fick principle. Cerebral function was assessed by a computer-based measurement of reaction time. At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow and oxidative metabolism are unaltered after high-altitude acclimatization from sea level, despite marked changes in breathing and other organ functions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3