Uncoupling of Cerebral Blood Flow and Metabolism after Cerebral Contusion in the Rat

Author:

Richards Hugh K.1,Simac Sretan1,Piechnik Stefan1,Pickard John D.1

Affiliation:

1. Cambridge Center for Brain Repair and Academic Neurosurgery Unit, Addenbrooke's Hospital, Cambridge, U.K.

Abstract

Positron emission tomography scans of patients with head injuries often show discrete areas of increased 18F-fluorodeoxyglucose uptake (“hot spots”) when performed hours to days after the initial ictus. Using quantitative autoradiographic methods, the authors have investigated whether cerebral blood flow and glucose metabolism are uncoupled 2 hours after controlled head injury in an animal model, and whether any “hot spots” are accompanied by changes in cerebral glucose concentration. Experiments were performed on 18 anesthetized, ventilated (1.5% halothane in 2:1 nitrous oxide:oxygen) Sprague-Dawley rats weighing 300 to 330 g. A burr hole was made over the left parietal cortex, and all animals received a piston impact on the intact dura (2 mm in diameter, 2.0 m/sec, 2 mm in depth). All animals remained anesthetized and ventilated for a further 2 hours, after which quantitative autoradiography was used to determine either (1) local cerebral blood flow (LCBF) using 14C-iodoantipyrine, (2) local cerebral glucose utilization (LCGU) using 14C-deoxyglucose, or (3) local cerebral glucose content (LCGC) using 14C-methylglucose. Local CBF, LCGU, and LCGC were measured in five regions adjacent to the contusion, and values then were normalized on the contralateral cortex. Normalized LCBF, LCGU, or LCGC varied in parallel in ipsilateral cortex (no change) and in the ischemic core of the contusion (reduced). However, there were marked changes in the patterns observed in the boundary zone (within 1 mm of the contusion). In all six rats used for LCGU measurement, there were discrete areas of high metabolism, whereas in all six rats used for LCBF measurement, flow was universally depressed in the boundary zone. Of the six rats used for LCGC determination, there was a discrete area of high signal in only one. The authors conclude that there are discrete areas of uncoupling of cerebral blood flow and metabolism after head injury within 2 hours of cerebral contusion in the rat that cannot be explained by changes in cerebral glucose content in the majority of animals.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3