E-Selectin in Focal Cerebral Ischemia and Reperfusion in the Rat

Author:

Zhang Rui Lan1,Chopp Michael12,Zhang Zheng G.12,Phillips M. Laurie3,Rosenbloom Craig L.4,Cruz Rebecca4,Manning Anthony4

Affiliation:

1. Neurology Department, Henry Ford Health Sciences Center, Detroit, Michigan

2. Physics Department, Oakland University, Rochester, Michigan

3. Cytel Corporation, San Diego, California

4. Pharmacia & Upjohn, Cell Biology and Inflammation Research, Kalamazoo, Michigan, U.S.A.

Abstract

The selectin family of glycoproteins facilitates the early phase of polymorphonuclear leukocyte adhesion to the endothelial cell and, thus, may promote ischemic cell damage. To evaluate E-selectin in the pathogenesis of focal cerebral ischemia and reperfusion injury, we cloned rat E-selectin cDNA and measured the temporal profiles E-selectin mRNA (Northern blot) and protein (immunohistochemistry) during (1 h of ischemia) and after (up to 1 week) transient (2 h) middle cerebral artery (MCA) occlusion in the male Wistar rat. We also tested the effect on these rats of administration of CY-1503, an analog of sialyl Lewisx(SLex), on ischemia cell damage. mRNA for E-selectin was first detected in the ischemic hemisphere at 2 h of reperfusion and persisted to 46 h of reperfusion. E-selectin (protein) was localized to microvessels within the ischemic lesion at 0 h of reperfusion and persisted to 70 h of reperfusion. Treatment of the ischemic animals with CY-1503 (50 mg/kg) (n = 8) significantly reduced infarct volume by 42% ( p < 0.05) and significantly reduced myeloperoxidase immunoreactive cells in the ischemic lesion by 60% ( p < 0.05). These findings provide the first direct evidence for the involvement of E-selectin in transient MCA occlusion in rats and suggest that the E-selectin may facilitate neutrophil adhesion and subsequent cerebral ischemic cell damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3