Ischemia-Induced Interleukin-6 as a Potential Endogenous Neuroprotective Cytokine against NMDA Receptor-Mediated Excitoxicity in the Brain

Author:

Ali Carine1,Nicole Olivier1,Docagne Fabian1,Lesne Sylvain1,MacKenzie Eric T.1,Nouvelot André1,Buisson Alain1,Vivien Denis1

Affiliation:

1. Université de Caen, UMR-CNRS 6551, IFR 47, Caen Cedex, France

Abstract

In the brain, the expression of the pleiotropic cytokine interleukin-6 (IL-6) is enhanced in various chronic or acute central nervous system disorders. However, the significance of IL-6 production in such neuropathologic states remains controversial. The present study investigated the role of IL-6 after cerebral ischemia. First, the authors showed that focal cerebral ischemia in rats early up-regulated the expression of IL-6 mRNA, without affecting the transcription of its receptors (IL-6Rα: and gp130). Similarly, the striatal injection of N-methyl-d-aspartate (NMDA) in rats, a paradigm of excitotoxic injury, activated the expression of IL-6 mRNA. The involvement of glutamatergic receptor activation was further investigated by incubating cortical neurons with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). NMDA and ionomycin (a calcium ionophore) up-regulated IL-6 mRNA, suggesting that neurons may produce IL-6 in response to the calcium influx mediated through NMDA receptors. The potential role of IL-6 during ischemic/excitotoxic insults was then studied by testing the effect of IL-6 against apoptotic or excitotoxic challenges in cortical cultures. IL-6 did not prevent serum deprivation- or staurosporine-induced apoptotic neuronal death, or AMPA/kainate-mediated excitotoxicity. However, in both mixed and pure neuronal cultures, IL-6 dose-dependently protected neurons against NMDA toxicity. This effect was blocked by a competitive inhibitor of IL-6. Overall, the results suggest that the up-regulation of IL-6 induced by cerebral ischemia could represent an endogenous neuroprotective mechanism against NMDA receptor-mediated injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3