Model of Blood–Brain Transfer of Oxygen Explains Nonlinear Flow-Metabolism Coupling During Stimulation of Visual Cortex

Author:

Vafaee Manouchehr S.1,Gjedde Albert12

Affiliation:

1. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

2. Positron Emission Tomography Center, Institute of Experimental Clinical Research, Aarhus University, Aarhus, Denmark

Abstract

The coupling between cerebral metabolic rate of oxygen (CMRO2) and blood flow (CBF) in response to visual stimulation was evaluated by means of a model of oxygen delivery. The model predicted a nonlinear relationship between stimulus-evoked changes of oxygen consumption and blood flow. The magnitude of the CMRO2/CBF ratio index ( IO2) was used to indicate the degree of flow-metabolism coupling prevailing in specific areas of the brain during physiological stimulation. Therefore, the index provided a measure of the blood oxygenation level dependent (BOLD) magnetic resonance contrast. To evaluate the changes of IO2 in response to visual stimulation, the model was applied to the effect of a changing flicker rate of a visual stimulus on the magnitudes of CBF, CMRO2, and oxygen diffusion capacity, in the human brain. Positron emission tomography (PET) was used to measure the CBF and the CMRO2 in 12 healthy volunteers who viewed a cross-hair (baseline) or a yellow-blue annular checkerboard reversing at frequencies of 1, 4, or 8 Hz. The magnitude of CBF in the primary visual cortex increased as a function of the checkerboard reversal rate and reached a maximum at the frequency of 8 Hz ( z = 16.0), while the magnitude of CMRO2 reached a maximum at 4 Hz ( z = 4.0). Therefore, the calculated IO2 was lower at 8 Hz than at 1 and 4 Hz, in contrast to the oxidative metabolic rate that reached its maximum at 4 Hz. The model explained the increase of oxygen consumption as the combined effect of increased blood flow and increased oxygen diffusion capacity in the region of visual activation.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3