Preganglionic and Postganglionic Neurons Responsible for Cerebral Vasodilation Mediated by Nitric Oxide in Anesthetized Dogs

Author:

Toda Noboru1,Ayajiki Kazuhide1,Tanaka Toshiki1,Okamura Tomio1

Affiliation:

1. Department of Pharmacology, Shiga University of Medical Science, Ohtsu, Japan

Abstract

The authors performed investigations to functionally determine the route of efferent innervation in vivo responsible for cerebral vasodilation mediated by nitric oxide (NO). In anesthetized beagles, electrical stimulation of the pterygopalatine ganglion vasodilated ipsilateral cerebral arteries such as the middle cerebral and posterior communicating arteries. Intravenous injections of NG-nitro-L-arginine (L-NA) markedly inhibited the response to nerve stimulation, and the effect was reversed by L-arginine. Stimulation of the proximal portion of the greater superficial petrosal nerve, upstream of the pterygopalatine ganglion, also produced cerebral vasodilation, which was abolished by L-NA and restored by L-arginine. Treatment with hexamethonium abolished the response to stimulation of the petrosal nerve but did not affect the response to pterygopalatine ganglion stimulation. Destruction of the pterygopalatine ganglion by cauterization constricted the cerebral arteries. Postganglionic denervation abolished the vasodilation, lacrimation, and nasal secretion induced on the ipsilateral side by stimulation of the pterygopalatine ganglion and petrosal nerve. The vasodilator response was suppressed by L-NA but unaffected by atropine, whereas lacrimation and nasal secretion were abolished solely by atropine. It is concluded that postganglionic neurons from the pterygopalatine ganglion play crucial roles in cerebral vasodilation mediated by NO from the nerve, and preganglionic neurons, possibly from the superior salivatory nucleus through the greater superficial petrosal nerve, innervate the pterygopalatine ganglion. Tonic discharges from the vasomotor center participate significantly in the maintenance of cerebral vasodilation.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3