Capillary Flow and Diameter Changes during Reperfusion after Global Cerebral Ischemia Studied by Intravital Video Microscopy

Author:

Hauck Erik F.12,Apostel Sebastian2,Hoffmann Julie F.2,Heimann Axel2,Kempski Oliver2

Affiliation:

1. From Divison of Neurosurgery, University of Texas Medical Branch, Galveston, U.S.A.

2. From Neurosurgical Pathophysiology, Johannes Gutenberg University of Mainz, Mainz, Germany); Laboratory of origin: Institute for Neurosurgical Pathophysiology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55101 Mainz, Germany

Abstract

The reaction of cerebral capillaries to ischemia is unclear. Based on Hossmann's observation of postischemic “delayed hypoperfusion,” we hypothesized that capillary flow is decreased during reperfusion because of increased precapillary flow resistance. To test this hypothesis, we measured cerebral capillary erythrocyte velocity and diameter changes by intravital microscopy in gerbils. A cranial window was prepared over the frontoparietal cortex in 26 gerbils anesthetized with halothane. The animals underwent either a sham operation or fifteen minutes of bilateral carotid artery occlusion causing global cerebral ischemia. Capillary flow velocities were measured by frame-to-frame tracking of fluorescein isothiocyanate labeled erythrocytes in 1800 capillaries after 1-hour reperfusion. Capillary flow velocities were decreased compared to control (0.25 ± 0.27mm/s vs. 0.76 ± 0.45 mm/s; P < 0.001). Precapillary arteriole diameters in reperfused animals were reduced to 76.3 ± 6.9% compared to baseline ( P < 0.05). Capillary diameters in reperfused animals (2.87 ± 0.97 μm) were reduced ( P < 0.001) compared to control (4.08 ± 1.19 μm). Similar reductions of precapillary (24%) and capillary vessel diameters (30%) and absolute capillary flow heterogeneity indicate that delayed (capillary) hypoperfusion occurs as a consequence of increased precapillary arteriole tone during reperfusion.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3