Functional Reduction and Associated Cellular Rearrangement in SHRSP Rat Basilar Arteries Are Affected by Salt Load and Calcium Antagonist Treatment

Author:

Arribas Silvia M.,Costa Rosa1,Salomone Salvatore1,Morel Nicole1,Godfraind Theophile1,McGrath John C.

Affiliation:

1. Laboratoire de Pharmacologie, Université Catholique de Louvain, Brussels, Belgium

Abstract

The stroke-prone spontaneously hypertensive rat (SHRSP) is a strain with high incidence of cerebrovascular accidents increased by salt-rich diet and decreased by calcium-antagonist treatment. In the SHRSP rat basilar artery the authors have previously shown reduced contractility and altered structure including regions of smooth muscle cell (SMC) disorganization, The aims of this study have been to analyze (I) the morphology of these abnormal regions, (2) the structural modifications responsible for the reduced function, and (3) the effect of salt and calcium-antagonist treatment on vascular structure and function, Wistar Kyoto and SHRSP rats, untreated or treated from week 8 through 14 with 1% NaCl or 1% NaCl + 1 ·kg−1·d−1 lacidipine, were used, Function was studied with wire myography, Structure was analyzed in fixed intact arteries with confocal microscopy, Basilar arteries from SHRSP rat showed (1) reduced contractility, (2) discrete foci of SMC disarray with altered proportion of adventitia to SMC, and (3) decreased SMC and increased adventitial cell number. Arteries from salt-loaded SHRSP rats showed a higher degree of SMC disarray and further reduction in contractility, Lacidipine treatment of salt-loaded rats significantly improved structure and function, These data suggest that vascular remodeling can provide an explanation for the observed reduction in vascular contractility of SHRSP rat basilar arteries and might show light on the effects of salt load and calcium-channel blockers in life span and the incidence of cerebrovascular accidents in SHRSP rats.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3