Quantitative Measurement of Local Cerebral Blood Flow in the Anesthetized Mouse Using Intraperitoneal [14C]Iodoantipyrine Injection and Final Arterial Heart Blood Sampling

Author:

Maeda Keiichiro1,Mies Günter1,Oláh László1,Hossmann Konstantin-Alexander1

Affiliation:

1. Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany

Abstract

Autoradiographic measurement of local cerebral blood flow (CBF) with [14C]iodoantipyrine (IAP) is limited in mice by the difficulty in cannulating vessels and the blood loss for repeated blood sampling. The authors modified and validated the method to measure local CBF with [14C]IAP in mice by combining intraperitoneal tracer application with a single blood sampling from the heart at the end of the experiment. Experiments were carried out in male SV129 mice under halothane anesthesia. After intraperitoneal administration of 15 μCi [14C]IAP, arterial blood samples were collected repeatedly and anesthetized animals were immersed in liquid nitrogen. In addition, frozen blood from the heart was sampled to obtain the final blood [14C]radioactivity. Correlation analysis between the sampling time and [14C] radioactivity of the arterial blood revealed a highly significant linear relationship ( P < 0.001, r = 0.978) and a lag time of the [14C]tracer in arterial blood of 3.3 ± 0.6 seconds. [14C]radioactivity of the final arterial blood sample (444 ± 264 nCi/mL) was almost equal to that of the heart blood (454 ± 242 nCi/mL), and the absolute difference in each animal was 3.3 ± 4.2% (mean ± SD). The convolution integrals for the CBF calculation were determined either by integrating the radioactivity of individual arterial blood samples or by assuming a linear rise from [14C]tracer lag time after intraperitoneal [14C]IAP injection to the value measured in the blood sample from the frozen heart. Regional flow values calculated by the two methods differed by less than 11 % (not significant). This method allows the quantitative measurement of local CBF in anesthetized mice without any vessel catheterization and will make mutant mice a more powerful tool to elucidate the molecular mechanisms of brain injuries by combining flow studies with molecular-biological methods.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3