An Absolute Measurement of Brain Water Content Using Magnetic Resonance Imaging in Two Focal Cerebral Ischemic Rat Models

Author:

Lin Weili123,Venkatesan Ramesh4,Gurleyik Kilichan2,He Yong Y.5,Powers William J.15,Hsu Chung Y.5

Affiliation:

1. Department of Radiology, Washington University, St. Louis, Missouri, U.S.A.

2. Department of Electrical Engineering, Washington University, St. Louis, Missouri, U.S.A.

3. Department of Biomedical Engineering, Washington University, St. Louis, Missouri, U.S.A.

4. General Electrical Inc., Bangalone, India

5. Department of Neurology, Washington University, St. Louis, Missouri, U.S.A.

Abstract

Magnetic resonance imaging (MRI) was utilized to obtain absolute estimates of regional brain water content (W), and results were compared with those obtained with conventional wet/dry measurements. In total, 31 male Long-Evans rats were studied and divided into two groups based on the surgical procedures used to induce cerebral focal ischemia: suture (n = 18) and three-vessel ligation (TVL; n = 13) groups. Both relative spin density and T1 were extracted from the acquired MR images. After correcting for radiofrequency field inhomogeneities, T2* signal decay, and temperature effects, in vivo regional brain water content, in absolute terms, was obtained by normalizing the measured relative brain spin density of animals to that of a water phantom. A highly linear relationship between MR-estimated brain water content based on the normalized spin density and wet/dry measurements was obtained with slopes of 0.989 and 0.986 for the suture ( r = 0.79) and TVL ( r = 0.83) groups, respectively. Except for the normal subcortex of the TVL group ( P < 0.02) and the normal hemisphere of the suture group ( P < 0.003), no significant differences were observed between MR-estimated and wet/dry measurements of brain water content. In addition, a highly linear relationship between MR-measured R1 (= 1/T1) and 1/W of wet/dry measurements was obtained. However, slopes of the linear regression lines in the two groups were significantly different ( P < 0.02), indicating that different R1 values were associated with the same water content depending on the model. These results show that an absolute measurement of in vivo regional brain water content can be obtained with MRI and potentially serves as a noninvasive means to monitor different therapeutic interventions for the management of brain edema subsequent to stroke and head trauma.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3