Reduced Branched-Chain Amino Acid Intake Improved High-Fat Diet-Induced Nonalcoholic Fatty Pancreas Disease in Mice

Author:

Lu Jun,Pan Ting1,Gao Jie2,Cai Xinghua3,Zhang Huihui,Sha Wenjun2,Lei Tao2

Affiliation:

1. Department of Endocrinology, West China Hospital, Sichuan University, Chengdu

2. Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai

3. Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui; and §School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Abstract

Objective To explore the effects of branched-chain amino acids (BCAAs) on nonalcoholic fatty pancreas disease (NAFPD) and its possible mechanism in high-fat diet (HFD) induced mice. Materials and Methods Pancreatic morphology and lipid infiltration was assessed by hematoxylin-eosin staining and immunohistochemistry, and lipid levels in the pancreas were determined using colorimetric enzymatic method. Relevant mechanism was investigated using western blotting and biochemical test. Results In HFD-fed mice, dietary BCAAs restriction could attenuate body weight increase, improve glucose metabolism, and reduce excessive lipid accumulation in the pancreas. Furthermore, expression of AMPKα and downstream uncoupling protein 1 were upregulated, while genes related to mammalian target of rapamycin complex 1 (mTORC1) signal pathway and lipid de novo synthesis were suppressed in HFD-BCAA restriction group compared with HFD and HFD-high BCAAs fed mice. In addition, BCAA restriction upregulated expression of BCAAs related metabolic enzymes including PPM1K and BCKDHA, and decreased the levels of BCAAs and branched chain keto acid in the pancreas. However, there was no difference in levels of lipid content in the pancreas and gene expression of AMPKα and mTORC1 between HFD and HFD-high BCAAs groups. Conclusions Branched-chain amino acid restriction ameliorated HFD-induced NAFPD in mice by activation of AMPKα pathway and suppression of mTORC1 pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Endocrinology,Hepatology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3