MARCH9 Mediates NOX2 Ubiquitination to Alleviate NLRP3 Inflammasome-Dependent Pancreatic Cell Pyroptosis in Acute Pancreatitis

Author:

Lin Min1,Jin Yuzhou1,Wang Fushuang1,Meng Yao1,Huang Jin1,Qin Xihu,Fan Zhining

Affiliation:

1. Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China

Abstract

Objective The pathogenesis of acute pancreatitis mainly involves NLRP3 inflammasome-mediated pancreatic cell injury, although regulators of this inflammasome machinery are still not fully identified. Membrane-associated RING-CH 9 (MARCH9) is a member of MARCH-type finger proteins, which regulates innate immunity through catalyzing polyubiquitination of critical immune factors. The aim of present research is to examine the function of MARCH9 in acute pancreatitis. Methods Cerulein-induced acute pancreatitis was established on pancreatic cell line AR42J and rat model. Reactive oxygen species (ROS) accumulation and NLRP3 inflammasome-dependent cell pyroptosis in pancreas were examined by flow cytometry. Results MARCH9 was downregulated by cerulein, but overexpressing MARCH9 could inhibit NLRP3 inflammasome activation and ROS accumulation, thus suppressing pancreatic cell pyroptosis and mitigating pancreatic injury. We further uncovered that the mechanism underlying such an effect of MARCH9 is through mediating the ubiquitination of NADPH oxidase-2, whose deficiency reduces cellular ROS accumulation and inflammasome formation. Conclusions Our results suggested that MARCH9 suppresses NLRP3 inflammasome-mediated pancreatic cell injury through mediating the ubiquitination and degradation of NADPH oxidase-2, which compromises ROS generation and NLRP3 inflammasomal activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Endocrinology,Hepatology,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3