Affiliation:
1. Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University
2. The Cleveland Clinic Foundation, Cleveland, OH
Abstract
Anaplastic thyroid carcinoma (ATC) often results from dedifferentiation of differentiated thyroid carcinoma (DTC), and the diagnosis is not difficult, as the tumor is seen to progress from a recognized DTC. However, in some cases, the diagnosis based on biopsy of limited tissue or resection of a completely undifferentiated tumor relies on immunohistochemical biomarkers and is usually a diagnosis of exclusion. To examine the biomarker profile of ATC and to determine whether divergent lineage markers can complicate this process, we examined the expression of a number of biomarkers in a series of ATCs. Cases retrieved from the department laboratory information system were included if there was evidence of an accurate diagnosis based on the presence of a coexisting or antecedent DTC or in cases where the immunoprofile was consistent with thyroid origin in a non-equivocal clinical setting. Questionable cases were excluded. We identified 36 cases for analysis. Tissue sections were stained for PAX8, TTF1, BRAFV600E, NRASQ61R, TRK, and p53, as well as p40, CDX2, SATB2, GATA3, CD117, CD163, SALL4, SMARCA4, PRAME, SOX10, ERG and HEPPAR1. As expected, all 36 ATCs were negative for TTF1 except for one showing focal, weak expression. Thirteen expressed PAX8 with variable intensity. BRAFV600E was positive in 10/34 tumors and equivocal in 3; NRASQ61R was positive in 12, and TRK was positive in 1 case. Staining for p53 was diffusely positive in 14 and completely negative in 19, with only 3 cases showing a wild-type pattern. We found aberrant expression of GATA3 in 11/36 cases, SATB2 in 8/36, CD117 in 2/35, and SALL4 in 1/30. CD163 expression was identified in tumor cells in 10/30 cases with variable intensity; in the other tumors, interpretation was obscured by abundant histiocytes. P40 was positive in 5 cases with squamoid morphology. CDX2 was negative in 35 tested cases. PRAME was identified in 1 of 33 cases. Stains for SOX10, ERG, and HEPPAR1 were negative in 33 cases. Twenty tested cases showed retained SMARCA4 expression. We conclude that ATCs express a number of divergent lineage markers that can cause diagnostic dilemmas, as they are also features of other tumors in the differential diagnosis of high-grade midline neck malignancies.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Pathology and Forensic Medicine,Surgery,Anatomy