Effect of Lumbar Fusion and Pelvic Fixation Rigidity on Hip Joint Stress

Author:

Kozaki Takuhei12,Lundberg Hannah J.1,Mell Steven P.1,Samartzis Dino1,Kawakami Mamoru3,Yamada Hiroshi2,Inoue Nozomu1,An Howard S.1

Affiliation:

1. Department of Orthopedic Surgery, Rush University Medical Center, Orthopedic Building, Chicago, IL

2. Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama City, Japan

3. Department of Orthopaedic Surgery, Saiseikai Wakayama Hospital, Wakayama City, Japan

Abstract

Study Design. This study compared hip stress among different types of lumbopelvic fusion based on finite element (FE) analysis. Objective. We believe that the number and placement of S2 alar iliac (AI) screws and whether the screws loosen likely influence hip joint stress in the FE model. Summary of Background Data. Spinopelvic fixation has been shown to increase the risk of progression for hip joint osteoarthritis. The biomechanical mechanism is not well understood. We hypothesize that the rigid pelvic fixation may induce stress at adjacent joints. Materials and Methods. A three-dimensional nonlinear FE model was constructed from the L4 vertebra to the femoral bone. From the intact model, we made four fusion models, each with different lower vertebrae instrumentation: (1) intact, (2) L4-S1 fusion, (3) L4-S2 AI screw fixation, (4) L4-S2 AI screw fixation with S2 AI screw loosening, and (5) L4-S1 and dual sacral AI screw fixation. A compressive load of 400 N was applied vertically to the L4 vertebra, followed by an additional 10 Nm bending moment about different axes to simulate either flexion, extension, left lateral bending, or right axial rotation. The distal femoral bone was completely restrained. The von Mises stress and angular motion were analyzed across the hip joints within each fusion construct model. Results. Hip joint cartilage stress and range of motion increased for all postures as pelvic fixation became more rigid. The dual sacral AI screw fixation model increased stress and angular motion at the hip joint more than intact model. Our results suggest that more rigid fixation of the pelvis induces additional stress on the hip joint, which may precipitate or accelerate adjacent joint disease. Conclusions. Dual sacral AI fixation led to the highest stress while loosening of S2 AI decreased stress on the hip joint. This study illustrates that more rigid fixation among lumbosacral fusion constructs increases biomechanical stress on the hip joints.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3