Regenerative Capability of Human Nucleus Pulposus Cells in Degenerated Disc Under Hydrostatic Pressure Mimicking Physiologically Relevant Intradiscal Pressure In Vitro

Author:

Takeoka Yoshiki,Kanda Yutaro,Kang James D.,Mizuno ShuichiORCID

Abstract

Study Design. Isolated human nucleus pulposus (hNP) cells from the degenerated intervertebral disc (IVD) were incubated under hydrostatic pressure (HP) and evaluated for regenerative potential. Objectives. To characterize metabolic turnover in hNP cells isolated from degenerated IVDs classified by Pfirrmann grade under physiologically relevant HP at high osmolality in vitro. Summary of Background Data. We demonstrated that bovine caudal nucleus pulposus cells isolated from healthy cows produced more extracellular matrix under cyclic HP followed by constant pressure (mimicking physiological intradiscal pressure in humans) than under no pressure in vitro. We assessed the effects of pressure on human degenerated cells isolated under the same regimen of pressure used for bovine cells. Materials and Methods. hNP cells isolated from discarded tissue classified as Pfirrmann grade 2 to 3 (n = 13: age, 46.7 ± 14.0) and grade 4 (n = 13: age, 53.0 ± 11.5) were incubated under cyclic HP at 0.2 to 0.7 MPa, 0.5 Hz for 2 days followed by constant pressure at 0.3 MPa for 1 day, repeated twice over 6 days. The gene expression and immunohistology of matrix molecules and catabolic and anticatabolic proteins were evaluated. Results. Aggrecan and collagen type II expression were significantly more upregulated under HP in grades 2 to 3 than in grade 4 tissues (both, P < 0.01). Linear regression analysis showed a positive correlation between matrix metalloproteinase 13 and tissue inhibitor for metalloproteinase 2 expression in grades 2 to 3, whereas a negative correlation was found in grade 4 (P < 0.05). Immunohistological staining revealed the activation of a mechanoreceptor, transient receptor potential vanilloid 4, under HP. Conclusions. Resident cells in mild-moderate degenerated discs classified as Pfirrmann grade 2 to 3 have the potential to promote extracellular matrix production and maintain adequate cell viability under physiological spinal loading. Relevance. This study explored the potential of degenerated remnant nucleus pulposus cells under a physiological environment, possibly leading to establishing strategies for IVD regeneration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3