Hsa_circ_0001946 Ameliorates Mechanical Stress-induced Intervertebral Disk Degeneration Via Targeting miR-432-5p and SOX9

Author:

Xiang Qian,Wang Juntan,Cheng Zhangrong,Zhao Kangcheng,Gan Weikang,Chen Yuhang,Zhang Yukun

Abstract

Study Design. Experimental analysis of circular RNA in intervertebral disk degeneration (IDD). Objective. This study aimed to explore the roles of hsa_circ_0001946 (circ-CDR1as) in mechanical stress-induced nucleus pulposus cell injury in IDD. Summary of Background Data. Mechanical stress is an important pathogenic factor for IDD. Excessive compression stress leads to nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation and accelerated IDD. Circ-CDR1as is associated with various degenerative conditions, but its role in IDD is not clear. Herein, we explored the roles and mechanisms of circ-CDR1as in IDD in vitro. Materials and Methods. An in vitro model of IDD was constructed by treating NP cells with 1.0 MPa compression stress. Quantitative real-time polymerase chain reaction assay was used for detecting the expression of circ-CDR1as and miR-432-5p. Immunofluorescent analysis was performed for MMP13 detection. Western blot assay was performed for detecting apoptosis and ECM-related protein expression. Flow cytometry analysis was used for cell apoptosis analysis. The dual-luciferase reporter was used to analyze the interaction between miR-432-5p and circ-CDR1as or SOX9. Differences in means between groups were evaluated using the Student t test or one-way analysis of variance. Results. In compression-treated human NP cells, we found that circ-CDR1as was significantly downregulated. Functional experiments showed that circ-CDR1as overexpression reduced the compression-induced apoptosis and ECM degradation in NP cells. Further research indicated that circ-CDR1as could act as a molecular sponge for miR-432-5p, a miRNA that enhanced compression-induced damage of NP cells by inhibiting the expression of SOX9. The luciferase reporter experiments also showed that the mutual dialogue between circ-CDR1as and miR-432-5p regulated the expression of SOX9. Conclusions. Circ-CDR1as binds to miR-432-5p and plays a protective role in mitigating compression-induced NP cell apoptosis and ECM degradation by targeting SOX9. Circ-CDR1as may provide a novel therapeutic target for the clinical management of IDD in the future.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3