A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development

Author:

Grailer Jamison,Cheng Zhijie Jey,Hartnett Jim,Slater Michael,Fan Frank,Cong Mei

Abstract

T-cell immunotherapies are promising strategies to generate T-cell responses towards tumor-derived or pathogen-derived antigens. Adoptive transfer of T cells genetically modified to express antigen receptor transgenes has shown promise for the treatment of cancer. However, the development of T-cell redirecting therapies relies on the use of primary immune cells and is hampered by the lack of easy-to-use model systems and sensitive readouts to facilitate candidate screening and development. Particularly, testing T-cell receptor (TCR)-specific responses in primary T cells and immortalized T cells is confounded by the presence of endogenous TCR expression which results in mixed alpha/beta TCR pairings and compresses assay readouts. Herein, we describe the development of a novel cell-based TCR knockout (TCR-KO) reporter assay platform for the development and characterization of T-cell redirecting therapies. CRISPR/Cas9 was used to knockout the endogenous TCR chains in Jurkat cells stably expressing a human interleukin-2 promoter-driven luciferase reporter gene to measure TCR signaling. Reintroduction of a transgenic TCR into the TCR-KO reporter cells results in robust antigen-specific reporter activation compared with parental reporter cells. The further development of CD4/CD8 double-positive and double-negative versions enabled low-avidity and high-avidity TCR screening with or without major histocompatibility complex bias. Furthermore, stable TCR-expressing reporter cells generated from TCR-KO reporter cells exhibit sufficient sensitivity to probe in vitro T-cell immunogenicity of protein and nucleic acid-based vaccines. Therefore, our data demonstrated that TCR-KO reporter cells can be a useful tool for the discovery, characterization, and deployment of T-cell immunotherapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cancer Research,Pharmacology,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3