Generation and Characterization of Ex Vivo Expanded Tumor-infiltrating Lymphocytes From Renal Cell Carcinoma Tumors for Adoptive Cell Therapy

Author:

Einstein David J.12,Halbert Brian1,Denize Thomas234,Matar Sayed23,West Destiny J.3,Gupta Mamta25,Andrianopoulos Emanuelle1,Seery Virginia1,Herman Courtney6,Onimus Kenneth6,Wells Adrian6,Bunch Brittany6,Signoretti Sabina23,Natarajan Arvind6,Veerapathran Anand6,McDermott David F.12

Affiliation:

1. Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA

2. Harvard Medical School, Boston, MA

3. Department of Pathology, Brigham and Women’s Hospital, Boston, MA

4. Department of Pathology, Massachusetts General Hospital, Boston, MA

5. Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA

6. Iovance Biotherapeutics, San Carlos, CA

Abstract

Autologous therapeutic tumor-infiltrating lymphocyte (TIL) therapy is a promising strategy to enhance antitumor immunity. Optimization of ex vivo TIL expansion could expand current immunotherapy options. Previous attempts to generate TIL in renal cell carcinoma (RCC) have been technically challenging. We applied a second-generation manufacturing process, currently used to generate the melanoma TIL product lifileucel, in RCC. Resected primary and metastatic RCC samples were processed using the Gen 2 manufacturing process comprising of pre-Rapid Expansion Protocol (pre-REP) and REP steps. We assessed REP TILs for viability and performed phenotypic and functional characterization. We correlated the tumor immune microenvironment (TIME) with successful TIL expansion. Eight of 11 RCC samples underwent successful REP. Three failed cases demonstrated low CD8/FoxP3 ratio and high expression of PD-1 within FoxP3 cells. Expression of exhaustion markers differed between the TIME and expanded TILs; the latter had a TIM3-high/PD-1-low phenotype but retained functional capacity comparable to lifileucel. The Gen 2 manufacturing process used for lifileucel successfully expanded functional TILs from RCC samples, enabling further study in a clinical trial. TIME features such as low CD8/FoxP3 ratio and high PD-1 expression within FoxP3 cells warrant study as potential biomarkers of successful TIL expansion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3