METTL3 regulates glucose transporter expression in placenta exposed to hyperglycemia through the mTOR signaling pathway

Author:

Ning Jie123,Huai Jing123,Wang Shuxian123,Yan Jie12,Su Rina12,Zhang Muqiu123,Liu Mengtong123,Yang Huixia123

Affiliation:

1. Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China

2. Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China

3. Peking University, Beijing 100034, China.

Abstract

Abstract Background: Alterations in the placental expression of glucose transporters (GLUTs), the crucial maternal–fetal nutrient transporters, have been found in women with hyperglycemia in pregnancy (HIP). However, there is still uncertainty about the underlying effect of the high-glucose environment on placental GLUTs expression in HIP. Methods: We quantitatively evaluated the activity of mammalian target of rapamycin (mTOR) and expression of GLUTs (GLUT1, GLUT3, and GLUT4) in the placenta of women with normal pregnancies (CTRL, n = 12) and pregnant women complicated with poorly controlled type 2 diabetes mellitus (T2DM, n = 12) by immunohistochemistry. In addition, BeWo cells were treated with different glucose concentrations to verify the regulation of hyperglycemia. Then, changes in the expression of GLUTs following the activation or suppression of the mTOR pathway were also assessed using MHY1485/rapamycin (RAPA) treatment or small interfering RNA (siRNA)-mediated silencing approaches. Moreover, we further explored the alteration and potential upstream regulatory role of methyltransferase-like 3 (METTL3) when exposed to hyperglycemia. Results: mTOR, phosphorylated mTOR (p-mTOR), and GLUT1 protein levels were upregulated in the placenta of women with T2DM compared with those CTRL. In BeWo cells, mTOR activity increased with increasing glucose concentration, and the expression of GLUT1, GLUT3, and GLUT4 as well as GLUT1 cell membrane translocation were upregulated by hyperglycemia to varying degrees. Both the drug-mediated and genetic depletion of mTOR signaling in BeWo cells suppressed GLUTs expression, whereas MHY1485-induced mTOR activation upregulated GLUTs expression. Additionally, high glucose levels upregulated METTL3 expression and nuclear translocation, and decreasing METTL3 levels suppressed GLUTs expression and mTOR activity and vice versa. Furthermore, in METTL3 knockdown BeWo cells, the inhibitory effect on GLUTs expression was eliminated by activating the mTOR signaling pathway using MHY1485. Conclusion: High-glucose environment-induced upregulation of METTL3 in trophoblasts regulates the expression of GLUTs through mTOR signaling, contributing to disordered nutrient transport in women with HIP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3