Early prediction of growth patterns after pediatric kidney transplantation based on height-related single-nucleotide polymorphisms

Author:

Feng Yi1,Feng Yonghua1,Hu Mingyao1,Xu Hongen2,Wang Zhigang1,Xu Shicheng2,Yan Yongchuang1,Feng Chenghao1,Li Zhou1,Feng Guiwen1,Shang Wenjun1

Affiliation:

1. Department of Renal Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China

2. Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China.

Abstract

Abstract Background: Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables. Methods: A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from October 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction. Results: The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796). Conclusions: A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3