Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer

Author:

Huang Weijia12,Xu Kai12,Liu Zhenkun12,Wang Yifeng12,Chen Zijia12,Gao Yanyun34,Peng Renwang34,Zhou Qinghua12

Affiliation:

1. Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China

2. Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China

3. Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland

4. Department for BioMedical Research, University of Bern, Bern 3010, Switzerland

Abstract

Abstract Background: Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing. Methods: Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen’s kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS. Results: A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Advanced diseases and metastases to other organs would be fit for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS. Conclusion: ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3