Affiliation:
1. Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian
2. State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
3. Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Exeter, UK
Abstract
Purpose of review
Hypertension, commonly known as high blood pressure, is a widespread health condition affecting a large number of individuals across the globe. Although lifestyle choices and environmental factors are known to have a significant impact on its development, there is growing recognition of the influence of genetic factors in the pathogenesis of hypertension. This review specifically focuses on the hereditary causes of hypertension that are associated with increased sodium transport through the thiazide-sensitive NaCl cotransporter (NCC) or amiloride-sensitive epithelial sodium channel (ENaC), crucial mechanisms involved in regulating blood pressure in the kidneys. By examining genetic mutations and signaling molecules linked to the dysregulation of sodium transport, this review aims to deepen our understanding of the hereditary causes of hypertension and shed light on potential therapeutic targets.
Recent findings
Liddle syndrome (LS) is a genetic disorder that typically manifests early in life and is characterized by hypertension, hypokalemic metabolic alkalosis, hyporeninemia, and suppressed aldosterone secretion. This condition is primarily caused by gain-of-function mutations in ENaC. In contrast, Pseudohypoaldosteronism type II (PHAII) is marked by hyperkalemia and hypertension, alongside other clinical features such as hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. PHAII results from overactivations of NCC, brought about by gain-of-function mutations in its upstream signaling molecules, including WNK1 (with no lysine (K) 1), WNK4, Kelch-like 3 (KLHL3), and cullin3 (CUL3).
Summary
NCC and ENaC are integral components, and their malfunctions lead to disorders like LS and PHAII, hereditary causes of hypertension. Current treatments for LS involve ENaC blockers (e.g., triamterene and amiloride) in conjunction with low-sodium diets, effectively normalizing blood pressure and potassium levels. In PHAII, thiazide diuretics, which inhibit NCC, are the mainstay treatment, albeit with some limitations and potential side effects. Ongoing research in developing alternative treatments, including small molecules targeting key regulators, holds promise for more effective and tailored hypertension solutions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Pediatrics, Perinatology and Child Health