AI in Neuro-Ophthalmology: Current Practice and Future Opportunities

Author:

Kenney Rachel C.,Requarth Tim W.,Jack Alani I.,Hyman Sara W.,Galetta Steven L.,Grossman Scott N.

Abstract

Background: Neuro-ophthalmology frequently requires a complex and multi-faceted clinical assessment supported by sophisticated imaging techniques in order to assess disease status. The current approach to diagnosis requires substantial expertise and time. The emergence of AI has brought forth innovative solutions to streamline and enhance this diagnostic process, which is especially valuable given the shortage of neuro-ophthalmologists. Machine learning algorithms, in particular, have demonstrated significant potential in interpreting imaging data, identifying subtle patterns, and aiding clinicians in making more accurate and timely diagnosis while also supplementing nonspecialist evaluations of neuro-ophthalmic disease. Evidence Acquisition: Electronic searches of published literature were conducted using PubMed and Google Scholar. A comprehensive search of the following terms was conducted within the Journal of Neuro-Ophthalmology: AI, artificial intelligence, machine learning, deep learning, natural language processing, computer vision, large language models, and generative AI. Results: This review aims to provide a comprehensive overview of the evolving landscape of AI applications in neuro-ophthalmology. It will delve into the diverse applications of AI, optical coherence tomography (OCT), and fundus photography to the development of predictive models for disease progression. Additionally, the review will explore the integration of generative AI into neuro-ophthalmic education and clinical practice. Conclusions: We review the current state of AI in neuro-ophthalmology and its potentially transformative impact. The inclusion of AI in neuro-ophthalmic practice and research not only holds promise for improving diagnostic accuracy but also opens avenues for novel therapeutic interventions. We emphasize its potential to improve access to scarce subspecialty resources while examining the current challenges associated with the integration of AI into clinical practice and research.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3