How does musical rhythm influence grammatical processing at the neurophysiological level?

Author:

Markevich Maksim1,Rebreikina Anna12,Logvinenko Tatiana3,Grigorenko Elena L.14,Sysoeva Olga12

Affiliation:

1. Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar Region, Russia

2. Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia

3. Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany

4. Department of Psychology, University of Houston, Houston, Texas, USA

Abstract

Numerous behavioral studies have demonstrated a rhythmic priming effect (RPE) on grammatical processing using grammaticality judgment tasks (GJT), where participants performed better following regular rhythmic sequences compared to baseline conditions or irregular rhythmic sequences (i.e. auditory rhythmic sequences with violated metrical structure). Only a few studies, however, have explored neurophysiological RPE in grammatical processing. Such neurophysiological investigations have been limited to GJT presented auditorily, have been primarily focused on the French- and German-speaking adult participants, and have rarely used baseline nonpriming conditions. The objective of the present study was to investigate neurophysiological correlates of the RPE in the GJT presented in visual modality. In the current study, we registered a 128-channel electroencephalogram while Russian-speaking adolescents performed a visual GJT, where each sentence was presented word by word in a self-paced manner. Before each experimental block, participants listened to regular rhythmic sequences, irregular rhythmic sequences, or silence. We observed that the late negativity in the event-related potential was larger for the ungrammatical condition compared to the grammatical condition only after the presentation of irregular rhythmic sequences. This effect, referred to as the N600 component in previous research, has been associated with increased cognitive complexity. In conclusion, results suggest that exposure to irregular rhythmic stimulation may lead to increased cognitive demand. This is attributed to the complexity associated with concurrently executing the GJT and managing rhythmic disruption, consequently increasing the strain on working memory resources.

Funder

the Ministry of Science and Higher Education of the Russian Federation

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3