Total flavonoids of Cynomorium songaricum attenuates cognitive defects in an Aβ1-42-induced Alzheimer’s disease rat model by activating BDNF/TrkB signaling transduction

Author:

Gu Zhirong1,Lv Xin2,Guo Yan2,Qi Mei1,Ge Bin1

Affiliation:

1. Department of Pharmacy, Gansu Provincial People’s Hospital

2. School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.

Abstract

Alzheimer’s disease (AD) is a degenerative disorder characterized by cognitive dysfunction and BDNF/TrkB is a well-conceived anti-AD signaling. Cynomorium songaricum Rupr. (C. songaricum) is a herb with promising neuroprotective effects and the function is majorly attributed to flavonoids. The current study attempted to explore the effects of total flavonoids of C. songaricum (CS) on AD model by focusing on changes in BDNF/TrkB axis. AD model was induced in rats via transcranial injection of Aβ1-42 and AD symptoms treated with CS of three doses. Donepezil was used as the positive control. Changes in rat memory and learning abilities, brain histological, apoptosis, production of neurotransmitters, BDNF/TrkB axis, and apoptosis-related markers were measured. The injection of Aβ1-42 induced cognitive dysfunction in AD rats. The integrity of brain tissue structure was destructed and apoptosis was induced in AD rats, in which was found the increased production of AChE and Aβ1-42, and decreased production of ChAT, ACH. At the molecular level, the expression of BDNF, TrkB, and Bcl-2 was suppressed, while the expression of Bax, caspase-3, and caspase-9 was induced. After the administration of CS, the memory and learning abilities of rats were improved, the production of neurotransmitter was restored, ordered arrangement of pyramidal cells was retained, and neuron apoptosis was inhibited. The attenuation of Aβ1-42-indcued impairments was associated with the activation of BDNF/TrkB axis and blockade of apoptosis-related pathways. Collectively, CS can improve learning and memory abilities in Aβ1-42-induced AD model rats. which may depend on the activation of the hippocampal BDNF/TrkB signaling pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3