Allopurinol and ellagic acid decrease epileptiform activity and the severity of convulsive behavior in a model of status epilepticus

Author:

Pardo-Peña Kenia1,Medina-Ceja Laura1,Martínez-Gallegos Salvador1,Sánchez-Lira Ana1

Affiliation:

1. Department of Cellular and Molecular Biology, Laboratory of Neurophysiology, University of Guadalajara, Zapopan, Jalisco, México

Abstract

Background During status epilepticus, severe seizures can occur, generating recurrent cycles of excitotoxicity and oxidative stress that cause neuronal damage and cell death. The administration of agents with antioxidant properties represents a therapeutic alternative aimed at reducing the severity of status epilepticus and mitigating the neurobiological consequences that precede them. Objective The objective of this work was to evaluate the antiseizure effect of the antioxidants allopurinol (ALL) and ellagic acid during status epilepticus induced by pilocarpine (PILO). Methods Male Wistar rats (200–250 g) were injected with ALL (50 mg/kg) or ellagic acid (50 mg/kg), 30 min before PILO administration (pretreatment) or 60 min after the beginning of status epilepticus, to evaluate the antiseizure effect of these drugs on epileptiform activity and convulsive behavior. Results ALL or ellagic acid administration before or after PILO significantly decreased the epileptiform activity and the severity of convulsive behavior. Better efficacy was observed when the drugs were administered as a pretreatment, increasing the latency time of the appearance of status epilepticus from 27.2 ± 2.6 to 45.8 ± 3.31 min, and significantly reducing the amplitude of epileptiform discharges by 53.5% with ALL and 68.9% with ellagic acid. Conclusion The antioxidants ALL and ellagic acid showed an antiseizure effect, representing an alternative to reduce epileptiform activity and severity of convulsive behavior during status epilepticus, an effect that may be used as adjuvants to mitigate or reduce oxidative damage processes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3