Locus coeruleus activation contributes to masseter muscle overactivity induced by chronic restraint stress in mice

Author:

Liu Yang1,Chen Ji23,Li Qiang1,Guo Yan-Xia1,Chen Yong-Jin1,Zhao Ya-Juan1

Affiliation:

1. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University

2. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University

3. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, China

Abstract

It is commonly accepted that exposure to stress may cause overactivity in the orofacial muscles, leading to consistent muscle pain, which is the main symptom of temporomandibular disorders. The central neural mechanism underlying this process, however, remains unclear. The locus coeruleus is considered to play an important role in stress-related behavioral changes. Therefore, the present study was designed to examine the role of locus coeruleus neurons in masseter overactivity induced by stress. C57BL/6 mice were subjected to chronic restraint stress for 14 days to establish an animal model. The behavioral changes and the electromyography of the masseter muscle in mice were measured. The expression of Fos in locus coeruleus was observed by immunofluorescence staining to assess neuronal activation. A chemogenetic test was used to inhibit locus coeruleus neuronal activity, and the behavioral changes and electromyography of the masseter muscle were observed again. The results exhibited that chronic restraint stress could induce anxiety-like behavior, overactivity of the masseter muscle, and significant activation of locus coeruleus neurons in mice. Furthermore, inhibition of noradrenergic neuron activity within the locus coeruleus could alleviate stress-induced anxiety behavior and masseter muscle overactivity. Activation of noradrenergic neurons in locus coeruleus induced by stress may be one of the central regulatory mechanisms for stress-induced anxiety-like behaviors and overactivity of masseter muscles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3