Propofol ameliorates cognitive deficits following splenectomy in aged rats by inhibiting ferroptosis via the SIRT1/Nrf2/GPX4 pathway

Author:

Wen Yadong1,Zhang Weihua2,Wang Dingran2,Lu Meijing2

Affiliation:

1. Department of Critical Care Medicine

2. Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China

Abstract

The aim of this study was to investigate the mechanism by which propofol reduces postoperative cognitive dysfunction after splenectomy in aged rats. The rats in the model group and propofol group were subjected to splenectomy, and anesthetized with isoflurane and propofol, respectively. Utilizing the western blotting to assess the expression of sirtuin-1 (SIRT1) in the hippocampus. Molecular docking technology was used to predict the binding ability of propofol and SIRT1. Behavioral tests were performed using the Morris water maze, and the hippocampus was isolated for mechanistic investigations. Molecular docking showed that propofol and SIRT1 had a strong binding affinity. The expression of SIRT1 and its related proteins Nrf2, HO-1, NQO1, and GPX4 in the model rats was decreased compared with the sham group. Moreover, the model group exhibited cognitive decline, such as extended escape latency and decreased number of platform crossings. Pathological analysis showed that the number of apoptotic neurons, the levels of oxidative stress and neuroinflammation, the iron deposition, and the expressions of ACSL4 and TFR1 were increased, while the expressions of SLC7A11 and FTH1 were decreased in the hippocampal CA1 region within the model group. These pathological changes in the propofol group were, however, less than those in the model group. Nevertheless, the SIRT1 inhibitor increased these pathological changes compared with the propofol group. Compared with isoflurane, propofol inhibits ferroptosis in the hippocampus of splenectomized rats by causing less downregulation of the SIRT1/Nrf2/GPX4 pathway, thereby reducing the negative impact on cognitive function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3