Sortilin inhibition in microglial cells cannot alleviate ischemia and hypoxia-induced neuronal injury in co-culture

Author:

Long Shuang1,Liu Zhao2,Wang Yan1

Affiliation:

1. Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University

2. Chongqing General Hospital, Department of Neurology, Chongqing, China

Abstract

Sortilin is a single-pass type I transmembrane protein which can bind to various cargo proteins, regulating their surface location, secretion, or degradation in lysosomes. In our previous study, we found that sortilin can regulate progranulin expression by transporting it to lysosomes and reduce neuronal cell injury in hypoxia-ischemia, but the expression and function of sortilin in microglial cells during hypoxia-ischemia are unknown. The purpose of this study was to further investigate the function of sortilin in microglial cells and its effect on neuron cells. In rat BV2 microglial cells, sortilin was knocked down by lentivirus. After oxygen-glucose deprivation/reperfusion (OGD/R), expression of sortilin, progranulin (PGRN) and JNK pathway was detected by western blot, immunofluorescence was used to show the localization of PGRN, secretion of TNFα/IL-6 was measured by Elisa. Then co-culture microglial cells with neuron cells during hypoxia-ischemia and detected the neuron injury by CCK-8 and TUNEL. The expression of sortilin, mature and cleaved PGRN were all increased after OGD/R in microglial cells. Furthermore, sortilin inhibition accompany with less PGRN localization in lysosomes and more mature and less cleaved PGRN expression in microglial cells. Sortilin inhibition also can reduce the inflammatory response in microglial cells, but it does not alleviate neuronal injury in co-culture. This study demonstrated that sortilin can regulate the expression of PGRN and reduce the inflammatory response in microglial cells. However, only inhibiting sortilin in microglial cells did not have an impact on the survival of neurons during ischemia-hypoxia

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3